Explicit Hermite-type Eigenvectors of the Discrete Fourier Transform
نویسنده
چکیده
The search for a canonical set of eigenvectors of the discrete Fourier transform has been ongoing for more than three decades. The goal is to find an orthogonal basis of eigenvectors which would approximate Hermite functions – the eigenfunctions of the continuous Fourier transform. This eigenbasis should also have some degree of analytical tractability and should allow for efficient numerical computations. In this paper we provide a partial solution to these problems. First, we construct an explicit basis of (non-orthogonal) eigenvectors of the discrete Fourier transform, thus extending the results of [7]. Applying the Gramm-Schmidt orthogonalization procedure we obtain an orthogonal eigenbasis of the discrete Fourier transform. We prove that the first eight eigenvectors converge to the corresponding Hermite functions, and we conjecture that this convergence result remains true for all eigenvectors.
منابع مشابه
An Efficient Hamiltonian for Discrete Fractional Fourier Transform
Fractional Fourier Transform, which is a generalization of the classical Fourier Transform, is a powerful tool for the analysis of transient signals. The discrete Fractional Fourier Transform Hamiltonians have been proposed in the past with varying degrees of correlation between their eigenvectors and Hermite Gaussian functions. In this paper, we propose a new Hamiltonian for the discrete Fract...
متن کاملDiscrete fractional Fourier transform based on the eigenvectors of tridiagonal and nearly tridiagonal matrices
The recent emergence of the discrete fractional Fourier transform (DFRFT) has caused a revived interest in the eigenanalysis of the discrete Fourier transform (DFT) matrix F with the objective of generating orthonormal Hermite-Gaussian-like eigenvectors. The Grünbaum tridiagonal matrix T – which commutes with matrix F – has only one repeated eigenvalue with multiplicity two and simple remaining...
متن کاملEigenvectors of the Discrete Fourier Transform Based on the Bilinear Transform
Determining orthonormal eigenvectors of the DFT matrix, which is closer to the samples of Hermite-Gaussian functions, is crucial in the definition of the discrete fractional Fourier transform. In this work, we disclose eigenvectors of the DFT matrix inspired by the ideas behind bilinear transform. The bilinear transform maps the analog space to the discrete sample space. As jω in the analog s-d...
متن کاملA New Formulation of the Fast Fractional Fourier Transform
By using a spectral approach, we derive a Gaussian-like quadrature of the continuous fractional Fourier transform. The quadrature is obtained from a bilinear form of eigenvectors of the matrix associated to the recurrence equation of the Hermite polynomials. These eigenvectors are discrete approximations of the Hermite functions, which are eigenfunctions of the fractional Fourier transform oper...
متن کاملDirect sequential evaluation of optimal orthonormal eigenvectors of the discrete Fourier transform matrix by constrained optimization
The recent emergence of the discrete fractional Fourier transform has spurred research activity aiming at generating Hermite-Gaussian-like (HGL) orthonormal eigenvectors of the discrete Fourier transform (DFT) matrix F. By exploiting the unitarity of matrix F – resulting in the orthogonality of its eigenspaces pertaining to the distinct eigenvalues – the problem decouples into finding orthonorm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 36 شماره
صفحات -
تاریخ انتشار 2015